If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2-15k-108=0
a = 3; b = -15; c = -108;
Δ = b2-4ac
Δ = -152-4·3·(-108)
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-39}{2*3}=\frac{-24}{6} =-4 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+39}{2*3}=\frac{54}{6} =9 $
| 3k^2-15k-100=0 | | 15-2/3n=25 | | 0=11t-4.9t^2 | | 5x-(2x-9)=24 | | 25=1/2h(2+3) | | x+91=300000000.000000 | | 7^2x+1=2^3 | | 25=(1/2)h(2+3) | | -5.6=-2(4x-9.2) | | 15=2(5*w) | | -5t(t+1)=0 | | 5(2x+4)=8x+2 | | 10^x+100^2x=1000^5 | | 6/x+6/x+8/x+1+4/x+1=12 | | .3x=84 | | 2=p | | 2(3x+1)=4(x+3) | | 0=11t-4.9t^2+24 | | 6x-146=-2x+78 | | 0.6-m=7 | | 24x-3x-13=50 | | x/169=0.4 | | 7f^2–4f–3=0 | | 169/x=0.4 | | 4x+3x+12=2(15+2x) | | 3x+(x+21)+63=180 | | (7x-7)+(2x-3)=180 | | 14.50x+25=12.50x+35 | | 9x+3x+10=12x+10 | | (7x-7)+(2-3)=180 | | 24d^2+5d–1=0 | | x*169=0.4 |